Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Despite their biological significance, the study of hydropersulfides (RSSH) is often limited due to their inherent instability. Here, we introduce arylsulfonothioates as thiol activated RSSH donors and provide insight into cellular reactive sulfur species homeostasis. These precursors persulfidate physiologically relevant thiols (RSH) to form the corresponding RSSH. Real-time monitoring of hydrogen sulfide (H2S) generation via membrane inlet mass spectrometry (MIMS) was employed to follow RSSH production, revealing that electron-donating aryl substituents marginally slow RSSH release rates, whereas electron-withdrawing substituents slightly accelerate release. Furthermore, arylsulfonothioates with strong electron-withdrawing substituents offer superior protection against doxorubicin (DOX)-induced cardiotoxicity. Experiments using H9c2 cardiomyocytes affirmed the cell-permeability of arylsulfonothioates and their ability to increase intracellular RSSH levels and protein persulfidation levels. Notably, we observe the excretion of RSSH into the extracellular medium. Further investigations revealed the involvement of the cystine/glutamate antiporter SLC7A11, as cotreatment with its inhibitor, sulfasalazine, significantly reduce extracellular RSSH release. H9c2 cells exhibit tolerance to arylsulfonothioate 1g with an electronwithdrawing 4-cyano group at 1 mM; however, inhibition of the cystine antiporter results in a minor decrease in cell viability. Under oxidative stress conditions induced by DOX or hydrogen peroxide (H2O2), cotreatment with 1g diminishes the excretion of RSSH and confers cytoprotection against DOX or H2O2-mediated toxicity. Our findings show adaptive cellular responses to RSSH levels, demonstrating excretion under elevated conditions to maintain redox homeostasis and intracellular retention as a protective response during oxidative stress.more » « lessFree, publicly-accessible full text available March 5, 2026
-
Hydrogen sulfide (H2S) exhibits protective effects in cardiovascular disease such as myocardial ischemia/reperfusion (I/R) injury, cardiac hypertrophy, and atherosclerosis. Despite these findings, its mechanism of action remains elusive. Recent studies suggest that H2S can modulate protein activity through redox-based post-translational modifications of protein cysteine residues forming hydropersulfides (RSSH). Furthermore, emerging evidence indicates that reactive sulfur species, including RSSH and polysulfides, exhibit cardioprotective action. However, it is not clear yet whether there are any pharmacological differences in the use of H2S vs. RSSH and/or polysulfides. This study aims to examine the differing cardioprotective effects of distinct reactive sulfur species (RSS) such as H2S, RSSH, and dialkyl trisulfides (RSSSR) compared with canonical ischemic post-conditioning in the context of a Langendorff ex-vivo myocardial I/R injury model. For the first time, a side-by-side study has revealed that exogenous RSSH donation is a superior approach to maintain post-ischemic function and limit infarct size when compared with other RSS and mechanical post-conditioning. Our results also suggest that RSSH preserves mitochondrial respiration in H9c2 cardiomyocytes exposed to hypoxia-reoxygenation via inhibition of oxidative phosphorylation while preserving cell viability.more » « less
-
null (Ed.)The recent discovery of the prevalence of hydropersulfides (RSSH) species in biological systems suggests their potential roles in cell regulatory processes. However, the reactive and transient nature of RSSH makes their study difficult, and dependent on the use of donor molecules. Herein, we report alkylsulfenyl thiocarbonates as a new class of RSSH precursors that efficiently release RSSH under physiologically relevant conditions. RSSH release kinetics from these precursors are tunable through electronic modification of the thiocarbonate carbonyl group's electrophilicity. In addition, these precursors also react with thiols to release RSSH with a minor amount of carbonyl sulfide (COS). Importantly, RSSH generation by these precursors protects against oxidative stress in H9c2 cardiac myoblasts. Furthermore, we demonstrate the ability of these precursors to increase intracellular RSSH levels.more » « less
An official website of the United States government
